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Abstract

The difference between a malicious and a benign An-
droid application can often be characterised by context and
sequence in which certain permissions and APIs are used.
We present a new technique for checking temporal proper-
ties of the interaction between an application and the An-
droid event system. Our tool can automatically detect sensi-
tive operations being performed without the user’s consent,
such as recording audio after the stop button is pressed, or
accessing an address book in the background. Our work
centres around a new abstraction of Android applications,
called a Permission Event Graph, which we construct with
static analysis, and query using model checking. We eval-
uate application-independent properties on 152 malicious
and 117 benign applications, and application-specific prop-
erties on 8 benign and 9 malicious applications. In both
cases, we can detect, or prove the absence of malicious be-
haviour beyond the reach of existing techniques.

1 Introduction

Users of smartphones download and install software
from application markets. According to the Google I/O
keynote in 2012, by June 2012, the official market for An-
droid applications, Google Play, hosted over 600,000 appli-
cations, which had been installed over 20 billion times. De-
spite recent advances in mobile security, there are examples
of malware that cannot be detected by existing techniques.
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A malicious application can compromise a user’s secu-
rity in several ways. Examples include leaking phone iden-
tifiers, exfiltrating the contents of an address book, or audio
and video eavesdropping. Consult recent surveys for more
examples of malicious behaviour [12, 14, 19].

In this paper, we focus on detecting malicious behaviour
that can be characterised by the temporal order in which
an application uses APIs and permissions. Consider a ma-
licious audio application and which eavesdrops on the user
by recording audio after the stop-button has been pressed,
and a benign one. Both applications use the same permis-
sions, and start and stop recording in response to button
clicks. Malware detection based on syntactic or statistical
patterns of control-flow or permission requests cannot dis-
tinguish between these two applications [14, 15, 18]. The
difference between the two applications is semantic and re-
quires semantics-based analysis.

The intuition behind our work is that user expectations
and malicious intent can be expressed by the context in
which APIs and permissions are used at runtime. A user
expects that clicking a start or stop button, will respectively,
start or stop recording, and further, that this is only way an
audio application records. This expectation can be encoded
by two API usage policies. The API to start recording au-
dio should be called if and only if the event handler for the
start button was previously called. The API to stop record-
ing should be called if and only if the event handler for the
stop button was previously called. Policies requiring that
sensitive resources are not accessed by background tasks or
in response to timer events can also aid in distinguishing
benign from malicious behaviour.

We present Pegasus, a system for specifying and auto-
matically enforcing policies concerning API and permission
use. Pegasus combines static analysis, model checking, and



runtime monitoring. We anticipate several applications of
such technology. One is automatic, semantics-based screen-
ing for malware. Another is as a diagnostic tool that se-
curity analysts can use to dissect potentially malicious ap-
plications. A third is to provide fine-grained information
about permission use to enable users to make an informed
decision about whether to install an application.

Our system can be attacked by malware writers who ob-
fuscate their applications to avoid static detection. How-
ever, such obfuscation will trigger our runtime checks and
lead to convoluted code structures, which can be detected
syntactically. Thus an attempt to evade our system and may
only result in drawing greater scrutiny to the application.

1.1 Problem and Approach

We now describe the challenges behind policy specifica-
tion and checking in greater detail, and the insights behind
our solution.

Problem Definition. We consider three closely related
problems. The first problem is to design a language for
specifying the event-driven behaviour of an Android appli-
cation. The second problem is to construct an abstraction of
the interaction between an Android application and the An-
droid event system. The third problem is to check whether
this abstraction satisfies a given policy. A solution to these
problems would allow us to specify security policies and de-
tect (or prove the absence of) certain malicious behaviour.

Challenges. Property specification mechanisms typically
focus on an application. Executing a task in the background,
or calling an API after a button is clicked, are properties of
the Android event system, not the application. Specifying
policies governing event-driven API use requires a language
that can describe properties of an application as well as of
the operating system. For example, specifying that audio
should not be recorded after a stop button is clicked, re-
quires us to describe an application artefact, such as a but-
ton, a system artefact, such as a recording API, and the in-
teraction between the two.

Checking policies of the form above is a greater chal-
lenge. Software model checking is a powerful technique for
checking temporal properties of programs. Software model
checkers construct abstractions of a program and then check
properties using flow-sensitive analysis. The execution of
an Android application is the result of intricate interplay
between the application code and the Android system or-
chestrated by callbacks and listeners. Constructing an ab-
straction of such behaviour is difficult because control-flow
to event-handlers is invisible in the code. Moreover, static
analysis of event-driven programs has received little atten-
tion, and was recently shown to be EXPSPACE-hard [25].
The first analysis challenge is to model control-flow be-
tween the event system and application.

The second analysis challenge is to design and compute
an abstraction that can represent event-driven behaviour, but
is small compared to the Android system. Most existing
techniques abstract data values in a program, but our focus
on the Android event system mandates a new abstraction.
The challenge in computing an abstraction lies in modelling
the Android event system, and dealing with complex heap
manipulation in Android programs, and their use of reflec-
tion, and APIs from the Java and Android SDK.

Insights. We overcome the aforementioned challenges us-
ing the insights described next. Our first insight is that
though the Android system is a large, complicated object,
it changes the state of the application using a fixed set of
event handlers. It suffices for a policy language to express
event handlers, APIs, and certain arguments to APIs to spec-
ify the context in which an application uses permissions.

Even a restricted analysis of the Android event system
or event handlers defined in an application is not feasible
due to the size of the code and the state-space explosion
problem. Our second insight is to use a graph to make the
interaction between an application and the system explicit.
We introduce Permission Event Graphs (PEGs), a new rep-
resentation that abstracts the interplay between the Android
event system, and permissions and APIs in an application,
but excludes low-level constructs.

Our third insight is that a PEG can be viewed as a pred-
icate abstraction of an Android application and the An-
droid system, where predicates describe which events can
fire next. Standard predicate abstraction engines use theo-
rem provers to compute how program statements transform
predicates over data. We implement a new, Android spe-
cific, event semantics engine, which can compute how API
calls transform predicates over the Android event queue.

The final challenge, once an abstraction has been con-
structed is to check that it satisfies a given policy. We use
standard model checking algorithms for this purpose. De-
tecting sequences or repeating patterns in an application can
be implemented using basic graph-theoretic algorithms for
reachability and loop detection.

Our experience suggests that PEGs reside in a sweet-spot
in the precision-efficiency spectrum. Our analysis based on
PEGs is more precise than existing syntactic analyses and is
more expensive to construct. However, we gain efficiency
because a single PEG can be queried to check several poli-
cies pertaining to a single application.

1.2 Content and Contributions

In this paper, we study the problem of detecting mali-
cious behaviour that manifests via patterns of interaction
between an application and the Android system. We design
a new abstraction of the context in which event-handlers
fire, and present a system for specifying, computing and



checking properties of this abstraction. We make the fol-
lowing contributions:

1. Permission Event Graphs: A novel abstraction of the
context in which events fire, and event-driven manner
in which an Android application uses permissions.

2. Encoding user and malicious intent: We encode
user expectations and malicious behaviour as tempo-
ral properties of PEGs.

3. PEG construction: We devise a static analysis algo-
rithm to construct PEGs. The algorithm computes a
fixed point involving transformers, generated by the
program, the event mechanism, and APIs. Our event
model supports 63 different event handling methods in
21 Android SDK classes.

4. PEG analysis: We implement Pegasus, an automated
analysis tool that takes as input a property, and checks
if the application satisfies that property.

5. Experiments: We check 6 application-independent
properties of 269 applications, and check application-
specific properties of 17 applications. Pegasus can au-
tomatically identify malicious behaviour, which was
previously discovered by manual analysis.

The paper is organised as follows: We summarise back-
ground on Android and introduce our running example in
Section 2. PEGs are formally defined in Section 3 and can
be constructed using the algorithm in Section 4. The details
of our system appear in Section 5, followed by our evalua-
tion in Section 6. We conclude in Section 8 after discussing
related work in Section 7.

2 Background and Overview

In this section, we give an overview of the Android plat-
form as relevant for this paper and illustrate PEGs with a
running example.

2.1 Android

Android is a computing platform for mobile devices.
It includes a multi-user operating system based on Linux,
middleware, and a set of core applications. Users install
third-party applications acquired from application markets.
An Android package is an archive (.apk file) containing
application code, data, and resource information.

Applications are typically written in Java but may also
include native code. Applications compile into a custom
Dalvik executable format (.dex), which is executed by the
Dalvik virtual machine.

Permissions. A permission allows an application to access
APIs, code and data on a phone. Permissions are required to
access the user’s contacts, SMS messages, the SD card, cam-
era, microphone, Bluetooth, and other parts of the phone.

All permissions required by an application must be granted
by a user at install time.

The Manifest. Every application has a manifest file
(AndroidManifest.xml) describing the application’s re-
quirements and constituents. The manifest contains com-
ponent information, the permissions required, and Android
API version requirements. The component information lists
the components in an application and names the classes im-
plementing these components.

Components. The building blocks of Android applica-
tions are components. A component is one of four types:
activity, service, content provider, and broadcast receiver,
each implemented as a subclass of Activity, Service,
ContentProvider, and BroadcastReceiver, respec-
tively. An activity is a user-oriented task (such as a
user interface), a service runs in the background. a con-
tent provider encapsulates application data, and a broad-
cast receiver responds to broadcasts from the Android sys-
tem. Components (consequently, applications) interact us-
ing typed messages called intents.

Lifecycles. A lifecycle is a pre-defined pattern governing
the order in which the Android system calls certain meth-
ods. An application can define callbacks and listeners that
contribute to the lifecycle.

An activity is started using the startActivity or
startActivityForResult API calls. During execution,
an activity may be running, meaning it is visible and has
focus, paused, if it is visible but not in focus, or stopped
if it is not visible. Application execution usually begins in
an activity. A service may be started or bound. A service
is started if a component calls startService, following
which the service runs indefinitely, even if the component
invoking it dies. The bindService call allows components
to bind to a service. A bound service is destroyed when all
components bound to it terminate.

Events and APIs. Events and APIs are the two ways an
Android application interacts with the system. We define
an event as a situation in which the Android system calls
application code. Examples of events are taps, swipes, SMS
notifications, and lifecycle events. The code that is called
when an event occurs is called an event handler. We define
an API to be a system defined function, which applications
can call. In this paper, we are concerned with event and
permission APIs. An event API is one that changes how
events are handled, such as registering a Button.onClick
listener, or making a button invisible.

2.2 Overview and Running Example

We now demonstrate the concepts in this paper with a
running example, as well as how we envision the system
being used. Consider a malicious audio recording applica-



Figure 1. User interface for the running example.
The application records audio in a background service
after the user has clicked the stop button.

tion, which eavesdrops on the user. On startup, the applica-
tion displays the interface shown in Figure 1. This interface
is implemented as a Recorder activity and contains two
buttons, REC and STOP.

Initially, only REC is clickable. Clicking REC initiates
recording, makes STOP clickable, and disables REC from
being clicked. Clicking STOP terminates recording, enables
REC, and disables STOP. When the application is started,
it registers a service, which creates a system timer callback,
which is invoked every 15 minutes. The callback function
records 3 minutes of audio and stores it on the SD card.
Since services run in the background, this application will
eavesdrop even after the recorder application is closed.

We now consider two problems: How can we precisely
define malicious behaviour such as surreptitious recording?
How can we automatically detect such behaviour?

Defining Malicious Intent. Rather than define malicious
intent, we focus on defining user intent, or user expecta-
tions. In our example, the details of how recording hap-
pens is determined by the developer, but a user expects to
be defining when recording happens. Moreover, the user
expects that clicking REC will start recording, that clicking
STOP will stop recording, and that this is the only situa-
tion in which recording occurs. This expectation contains a
logical component and a temporal component, and can be
formally expressed by a temporal logic formula.

(¬Start-Recording U REC.onClick)

∧ (Stop-Recording ⇐⇒ STOP.onClick)

This formula, in English, asserts that the proposition
Start-Recording does not become true until the proposition
REC.onClick is true, and that Stop-Recording is true if and
only if STOP.onClick is true. Such a formula is interpreted
over an execution trace. REC.onClick and STOP.onClick are
true at the respective instants in a trace when the eponymous
buttons are clicked. The propositions Start-Recording and
Stop-Recording are true in the respective instants when the
APIs to start and stop recording are called.

A second example of user expectation is that an SMS is
not sent unless the user performs an action, such as click-
ing a button. A third example is that when an SMS arrives,

Figure 2. Permissions requested by the recording ap-
plication during installation.

the user is notified. These properties can be expressed by
the two formula below. The second formula expresses that
a broadcast message (such as an SMS notification) is not
aborted by the application.

¬Send-SMS U Button.onClick

¬BroadcastAbort

The three formulae above fall into two different cate-
gories. The SMS and broadcast properties are application
independent. They can be checked against all applications,
and are part of a cookbook of generic properties we have
developed. The properties about recording are application
specific and have to be written by the analyst.

The set of propositions is defined by our tool, and in-
cludes permissions, API calls, certain event handlers, and
constant arguments to API calls. To aid the analyst, we have
implemented a tool that extracts from an application’s man-
ifest, the names and types of user interface entities such as
buttons and widgets, and their relevant event-handlers.

We express user intent with formulae. We say that an
application exhibits potentially malicious intent if it does
not satisfy a user intent formula. Our tool Pegasus auto-
matically checks if an application satisfies a formula. If an
application violates a property, Pegasus provides diagnostic
information about why the property fails. The analyst has to
decide if failure to respect user intent is indeed malicious.
We discuss this issue in greater detail later.

Detecting Potentially Malicious Intent. How can we de-
termine if an Android application respects a formula spec-
ifying user intent? Figure 2 depicts the permissions re-
quested by the recorder during installation. Techniques
that only examine permission requests [1, 18, 20] will only



know that the application uses audio and SD card permis-
sions. Since control-flow between the Android system and
event-handlers is not represented in a call graph, structural
analysis of call graphs [12, 23], will not identify the be-
haviours discussed above.

The challenge in checking temporal properties is to con-
struct an abstraction satisfying two requirements: It must
be small enough for model checking to be tractable. It
must be large enough to avoid generating a large number
of false positives. Permissions used by an application, call
graphs, and control flow graphs can be viewed as abstrac-
tions that can be efficiently analysed but do not satisfy the
second requirement. We now describe an abstraction that
enriches permission sets and call graphs with information
about event contexts.

Permission Event Graphs. We have devised a new ab-
straction called a Permission Event Graph (PEG). In a PEG,
every vertex represents an event context and edges repre-
sent the event-handlers that may fire in that context. Edges
also capture the APIs and permissions that are used when
an event-handler fires. Since permissions such as those for
accessing contact lists, are determined by APIs calls and the
argument values, knowledge of APIs does not subsume per-
missions. Example information that a PEG can represent is
that clicking a specific button causes the READ CONTACTS

permission to be used, while the ACCESS FINE LOCATION

permission is used in a background task.
A portion of the PEG for the running example is shown

in Figure 3. Every vertex represents an event context. There
are two types of edges. Solid edges represent synchronous
behaviour, and dashed edges represent asynchronous be-
haviour. We refer to the firing of one or more event handlers
as an event and the use of one or more APIs and permissions
as an action. An edge label E

A represents that when the event
E occurs, the action A is performed.

Figure 3 shows that when the event-handler REC.onClick
is called, the action denoted Start-Recording occurs. This
action represents calling an API to start recording. We have
omitted portions of the PEG related to the activity initialisa-
tion, destruction, and the service lifecyle. Next, the event
STOP.onClick is enabled, and when it occurs, causes the
Stop-Recording action. The dashed edge from onResume
indicates an asynchronous call to start a service.

The PEG captures semantic information about an appli-
cation that is not computed by existing techniques. For ex-
ample, we see that there are two distinct contexts in which
the audio is recorded. We also see that recording stops if we
click STOP, but this is not the only way to stop recording.

Examining the PEG reveals that the application records
audio even if REC is not clicked. Moreover, we can deter-
mine the sequence of events leading to this malicious be-
haviour: a new service is started, a timer is then created,
and timer events start recording. PEGs generated in practice

are too large to examine manually. In such cases, specifi-
cations can be treated as queries about the application, and
model checking can be used to answer such queries.

Security Analysis with PEGs. The techniques we develop
have several uses. All the uses follow the workflow of start-
ing with a set of properties, automatically constructing a
PEG for an application and model checking the PEG, manu-
ally examining the results of model checking, and repeating
this process if required.

There are several kinds of properties that an analyst can
check. We have developed a cookbook of application-
independent properties, such as background audio or video
recording. An analyst can write application-specific proper-
ties to check that an application functions as expected. For
example, clicking REC should start recording, and STOP
should stop recording. An analyst can also pose questions
about the behaviour of specific event-handlers: Does click-
ing the STOP button stop recording? If the application is
sent to the background, will recording continue or stop? If
the application is killed while recording, will the data be
saved to the SD card? All these questions can be encoded as
temporal properties.

Our tool Pegasus can be used to automatically construct
the PEG for an application and model check the PEG. If a
property is satisfied, the analyst will have to check if it was
too general, and try a more specific property. If a property is
not satisfied, the model checker will generate a counterex-
ample trace: a sequence of events and actions violating the
property. The analyst has to examine the trace and see if it is
symptomatic of malicious behaviour. If the behaviour is po-
tentially malicious, the analyst will have to reproduce it at
runtime. If the behaviour is benign, the analyst will have to
strengthen the property that is checked to narrow the search
for malicious behaviour.

To summarise, a vocabulary based on events and actions
allows for describing a new family of benign and malicious
behaviour beyond the reach of existing specification mech-
anisms. Events are a runtime manifestation of user inter-
action with an application, and actions describe an applica-
tion’s response. Specifications involving events and actions
allow us to encode user intent in mechanical terms. From a
user’s perspective, a PEG summarises the dialogue between
a user (via events) and an application. From an algorithmic
perspective, a PEG is a data-structure encoding the interac-
tion between the Android event system (via calls to event-
handlers) and application code.

3 An Abstraction of Android Applications

The contributions of this section are a formal definition
of PEGs, and a symbolic encoding of PEGs.
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Figure 3. Permission Event Graph for the running example. Vertices represent event contexts and an edge label E
A

represents that when the event-handler E fires, an action A is performed. Dashed edge represent asynchronous tasks.

3.1 Transition Systems from Android Apps

An Android application defines an infinite-state transi-
tion system, which describes the runtime behaviour of an
application. The transition system we define makes the
control-flow and event-relationships in an application ex-
plicit. It is a mathematical object that we never construct,
but it informs the design of our analysis.

States. A runtime state, or just state, is composed of an
application state and a system state. The application state
consists of the application program counter, a valuation of
program variables, and the contents of the stack and the
heap. The system state consists of the contents of the event
queue, event handlers and listeners that are enabled, and
other global system states. The set of states

State = App-States ×Sys-States

contains all combinations of application and system states.
These sets include unreachable states. A state σ = (p, s),
consists of an application state p and a system state s. We
denote the set of initial states of execution as Init .

Transitions. An application changes its internal state by
executing statements, and changes the system state by mak-
ing API calls. Conversely, the system may change its own

state or change application state by calling event handlers.
A transition is the smallest change in the state of an appli-
cation or system, and

Trans ⊆ State × State

is the transition relation of an application. A transition t
is caused by executing a statement, denoted stmt(t), in the
application or system code. We call t is an application tran-
sition if stmt(t) is in the application code and is a system
transition otherwise.

Transition Systems. The evolution of an application and
the Android system over time is mathematically described
by a transition system

T = (State,Trans, Init , stmt)

consisting of a set of states State , a transition relation
Trans , a set of initial states Init , and a function stmt that
labels transitions with statements.

Traces. We formalise the execution of the application in the
system. A trace of T is a sequence of states π = π0, π1, . . .
in which π0 is an initial state and every pair (πi, πi+1) is a
transition. We write traces(σ) for the set of traces originat-
ing from σ, and write traces(T ) for the set of traces of T . A
trace contains complete information about application and
system transitions.



3.2 Permission Event Graphs

The transition system defined by an application is infinite
and checking its properties is undecidable in general. The
standard approach to addressing such undecidability is to
construct an abstraction of this transition system. We now
introduce Permission Event Graphs, a variation of transi-
tion systems, which can represent finite-state abstractions
of Android applications.

Example 1. Revisit the PEG for the running example in
Figure 3. A vertex in the figure is called an abstract state.
The abstract state a1 represents all possible runtime states
in which the REC.onClick event-handler may be called in
the recorder activity. An edge in the figure is an abstract
transition. The abstract transition from a1 to a2 has a label
representing that if the event-handler REC.onClick is called,
the application will disable the REC, enable the STOP, start
recording, and transition to the state a2. The dashed edge
is an asynchronous transition, representing that the action
Start-Recording launches an asynchronous task. In this
case, a service is started. C

A formal definition of PEGs follows. We use the prefix
“a” to indicate sets used as abstractions. We write P(S) for
the set of all subsets of a set S.

We define an event to be a set of event handlers. For
example, the event STOP.onClick represents a single event
handler. We can also define an event onClick that corre-
sponds to all event handlers which may be called when a
button is clicked. Formally, let Handler be a set of event
handlers and Event be a set of symbols, each representing
one or more event-handlers.

Definition 1. A Permission Event Graph (PEG) over a set
of event symbols Event and APIs API is a tuple

PEG = (aState, aTrans, bTrans, aInit)

consisting of the following.
• A set of abstract states aState . Every abstract state

represents a set of runtime states, which form the con-
text of an event.
• A labelled transition relation aTrans ⊆ aState ×
Event × P(API) × aState , where each transition
(s1, E,A, s2), represents that in state s1, the event E
may fire, and causes the APIs inA to be called, leading
to abstract state s2.
• A relation bTrans ⊆ P(API)×aState , where each tu-

ple (A, s), represents that the action A causes an asyn-
chronous transition to the abstract state s.
• A set aInit of abstract initial states.

PEGs are different from control flow graphs, call graphs,
and other standard graph-based abstractions of programs.

A PEG is different from to a control flow graph because it
does not represent the syntactic structure of source code. A
PEG only contains calls to system APIs, rather than all calls,
as in a call graph, but also includes the values of arguments,
hence is related, but incomparable (mathematically) to a call
graph. We use the word “Permission” in the name because
permissions are determined by calls to APIs and their argu-
ments. We use the word “Event” to emphasise that state
transitions represent the effect of firing event handlers.

We use graph algorithms to analyse PEGs. To derive the
PEGs of an application efficiently, our abstraction engine
uses the symbolic encoding introduced next.

3.3 A Symbolic Encoding of PEGs

We now devise a compact encoding of PEGs. Our en-
coding uses Boolean variables to represent PEG states and
labels to represent actions, and can be exponentially more
succinct than representing a PEG as a labelled graph.

Mode Variables and Event-Modalities. We first encode
PEG states using Boolean variables. Define a set ModeVars
of Boolean-valued mode variables. The Boolean encoding
of an abstract state is a function

s : ModeVars → {true, false}

that assigns truth values to mode variables. The number
of mode variables we need is logarithmic in the number of
states of a PEG.

A Boolean formula ϕ over ModeVars represents the set
of Boolean encodings that make ϕ true. Recall that a literal
is a Boolean variable or its negation, and a cube is a con-
junction of literals. Let Cube be the set of cubes over mode
variables in a subset of ModeVars . We only use cubes and
not arbitrary Boolean formula over ModeVars to represent
sets of encodings because cubes can be efficiently manipu-
lated, while arbitrary formula cannot. The same encoding
choice is used in the SLAM project [2].

We encode abstract transitions using tuples called event-
modalities. An event-modality is a tuple

(Pre,A, Post) ∈ Cube × P(API)× Cube

consisting of a precondition Pre, a set of API labels A, and
a postcondition Post. An event-modality (Pre,A, Post)
represents the set of abstract transitions that begin in some
abstract state represented by Pre, and transition to some
abstract state represented by Post, while causing the action
A. Notice that events are not part of an event-modality.

Event-modalities encode abstract states and actions. We
also have to encode events. An event-map is a function

event-map : Handler → Cube



that maps each event-handler to a cube representing the set
of abstract states in which that event-handler may fire. A
symbolic encoding of a PEG is a tuple

sPEG = (aInit ,EventModality , event-map)

consisting of a cube aInit representing initial states, a set
EventModality of event-modalities, and an event-map.

Example 2. Consider a Boolean variable TimerEnabled
and a label Start-Recording. The timer-related behaviour
in Figure 3 can be encoded using the value true for
TimerEnabled to represent s2 and the value false to repre-
sent s3. The abstract transition from s1 to s2 is represented
by the event-modality below.

(TimerEnabled , {Start-Recording},¬TimerEnabled)

If the precondition TimerEnabled is true, the timer event
TIMER.run is enabled. If the event fires, the event handler
causes the application to transition to a state satisfying the
postcondition ¬TimerEnabled . C

4 The Abstraction Engine

The contribution of this section is a procedure and ar-
chitecture for constructing PEGs from Android applications.
Our implementation of this procedure combines a model of
the Android event system and APIs with fixed point iteration
in a lattice to derive PEGs.

4.1 The Core Algorithm

The interaction between an application, the event mecha-
nism and libraries in an Android application is summarised
in the upper part of Figure 4. The dashed arrows show that
the state of an execution is modified either by executing ap-
plication code or when the event system fires an event han-
dler. The solid arrows denote calls. An application may call
the Android APIs, and if the call is to register a listener, the
APIs in turn access the event system.

The architecture we use to compute a symbolic PEG is
shown in the lower part of Figure 4. Each shaded box rep-
resents an engine in our implementation. The different en-
gines interact to compute a set of event-modalities. We ab-
stract application code with a static analyser, model event
generation and destruction with an event semantics engine,
and model APIs with an API semantics engine.

Our static analyser determines a set of preconditions,
which specify event contexts. When an API call is encoun-
tered, the precondition and API name are given to the API
semantics engine. If the API modifies the application state,
a postcondition is returned to the static analyser. If the API
modifies the system state, the name of the API is given to the

States

Application

Event System Libraries

API call

Register
Listener

Call Event
Handler

EventModalities
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Figure 4. Intuition behind the abstraction engine.
The system computes event modalities by combining
a static analyser, which abstracts application seman-
tics, an API semantics engine, which abstracts API
calls, and an event semantics engine, which abstracts
the event system.

event semantics engine. The event semantics engine com-
putes the set of preconditions for that event handler to fire,
and the static analyser had to determine whether to analyse
the event handler code. By iterating between these three en-
gines, we derive a set of event-modalities that symbolically
encode a PEG for an application.

The functions below formalise these components.

entry : Handler → P(API)
next : Handler ×API→ P(API)

event-sem : Handler → P(Cube)
api -sem : API× Cube → P(Cube)
app-sem : Handler ×Cube

→ P(P(API)× Cube)

The function entry takes as input an event-handler name,
retrieves the code, constructs the CFG for the event-handler,
and retrieves the first set of API calls reachable from the
entry of the CFG, without calling other APIs. The function
next is similar to entry . When invoked as next(h,A) on
an event handler h with API call A, next will return the set



C of APIs in h that may be called after calling A, such that
there is no API call between A and each API in C. These
functions are implemented in the static analyser, by com-
bining control-flow reachability with pointer analysis.

The function event-sem takes as input an event handler
and returns as output a set of cubes representing precondi-
tions for that event handler to fire. This function is imple-
mented by the event semantics engine.

The function api -sem takes as input an API call A and
a precondition p and returns a set Q of postconditions. The
postconditions satisfy that executing A in a state satisfying
p leads to a state satisfying some cube in Q. This function
is implemented by the API semantics engine.

The function app-sem takes as input an event handler
and a precondition, and returns a set of pairs of the form
(A, q). Let h be an event handler. Towards formally defin-
ing app-sem , we define a function

reach-semh :P(P(API)× API× Cube)

→ P(P(API)× API× Cube)

that maps a tuple (A, a, p) representing a set of APIs A pre-
vious executed, and the API a that will be executed with
precondition p to the tuple (A∪{a}, b, q), where b is an API
that can be executed after a and q is the postcondition of
executing a when p holds.

reach-semh(R) = R ∪ {(A ∪ {a}, {b}, q) | where
(A, a, p) is in reach-semh(R), and
b is in next(h, a), and
q is in api -sem(b, p)}

Note that reach-semh occurs on both sides of the defini-
tion. The function is implemented by fixed point iteration
over the CFG to compute a set of action, postcondition pairs.
The function app-sem computes event modalities by com-
puting reach-semh and projecting out the action, postcon-
dition pairs that reach the exit point of the event handler.
Formally, app-sem satisfies the condition below.

app-sem(h, p) = {(A, q)|q ∈ Cube, and

A =
⋃

(B,b,q)∈R

B ∪ {b},

where R = {(∅, a, p) | a ∈ entry(h)},
and next(h, b) = ∅}

A pair (A, q) is produced by app-sem(h, p) exactly if A
is a set of APIs reachable in h, and executing h in a state
satisfying p leads to the postcondition q at the exit point of
h. We now describe how the precondition p is generated.

Fixed Point. We combine the functions above to compute a

fixed point whose result is the PEG for a given application:

EventModality = {(p,A, q) | p ∈ event-sem(h),

and (A, q) ∈ app-sem(h, p),

and h ∈ Handler}

In words, we consider each event handler h in Handler ,
use the event semantics engine to generate preconditions
for h to fire, and then combine app-sem and api -sem to
determine the postconditions derived by firing h. The im-
plementation of each function above is discussed below.

4.2 Implementation of the Engines

A contribution we make, en route to computing PEGs,
is to engineer a static analyser, an event semantics engine,
and an API semantics engine. We discuss implementation
details below.

Static Analysis. We implement a partially context-sensitive
points-to analysis serving two purposes. First, the analysis
overapproximates the targets of the method call. Overap-
proximation arises due to dynamic dispatch, where differ-
ent executions of a given method call may invoke differ-
ent methods. The second purpose is computing informa-
tion about method arguments. For example, consider a call
to Button.setOnClickListener. The first argument to
this method is the event handler to attach as the onClick

listener. We use the points-to analysis to disambiguate ar-
guments and to overapproximate the set of event handlers
the application will attach. Resolving arguments is nec-
essary to derive sufficient information for verification, be-
cause an API call can map to different permissions depend-
ing on the values of its arguments. For example, a call to
the ContentResolver.query(URI) method will access
the phone’s contacts if the URI points to the contacts con-
tent provider, while the same API will access the phone’s
SMS messages for a different URI. The two operations re-
quire different permissions.

We augment the context-insensitive analysis for event
handlers by propagating the points-to information for
method call parameters from the caller to the callee. This
provides partial context-sensitivity. In particular, it allows
the analysis of sub-functions to reason about values which
are computed in parent functions. Our experience shows
that this is important to handle, since many applications
pass arguments for system APIs through helper functions or
wrappers for those APIs. For flow-sensitivity, we use flow-
insensitive analysis for class fields and flow-sensitive anal-
ysis for local variables to balance efficiency and precision.
Our hybrid approach to points-to analysis is similar to the
use of object representatives or instance keys [5, 21, 30].

Event Semantics Engine. The event semantics engine im-
plements the event-sem function. It receives a method han-



Class name Methods

android .app. Activity onCreateOptionsMenu, onKeyDown, onOptionsItemSelected, onPrepareOptionsMenu,
<init>, onActivityResult , onConfigurationChanged, onCreate, onCreateContextMenu, onDestroy,
onPause, onRestart , onResume, onSaveInstanceState , onStart , onStop, onWindowFocusChanged

android .app.Dialog <init>, onCreate

android .app. ListActivity <init>, onCreate

android .app. Service onBind, <init>, onCreate, onDestroy, onLowMemory, onStart , onStartCommand

android . content . BroadcastReceiver <init>, onReceive

android . content . ContentProvider query, insert , onCreate, delete , update, getType, <init>

android . content .ServiceConnection onServiceConnected, onServiceDisconnected

android .os .AsyncTask doInBackground, onPostExecute, onPreExecute

android .os .Handler handleMessage

android . preference . PreferenceActivity onPreferenceTreeClick , <init>, onCreate, onDestroy, onStop

android . preference . Preference .OnPreferenceChangeListener onPreferenceChange

android . preference . Preference . OnPreferenceClickListener onPreferenceClick

android . telephony . PhoneStateListener onCallStateChanged

android .view.View.OnClickListener onClick

android .view.View.OnTouchListener onTouch

android .webkit .WebChromeClient onProgressChanged

android .webkit .WebViewClient shouldOverrideUrlLoading, onPageFinished, onPageStarted, onReceivedError

android .widget.AdapterView.OnItemClickListener onItemClick

android .widget.AdapterView.OnItemLongClickListener onItemLongClick

java . lang .Runnable run, run

java . lang .Thread run

Table 1. Event handling APIs supported by the event semantics engine.

dler name as input and returns the preconditions for the han-
dler to execute. This engine models the semantics of events
by capturing the context in which an event may fire. We
implemented the engine by examining the effect of event
handling mechanism as specified in the Android documen-
tation and in the Android platform code. A list of 63 event
handlers we model is given in Table 1.

API semantics engine. The api -sem receives as input a
method call and a precondition, and generates as output the
event-modalities generated by executing the method when
that precondition is satisfied, and the postcondition in which
the method terminates. Though these event-modalities are
determined by the implementation of Android APIs, we do
not analyse the Android API source code. Instead, we model
every API call we have found necessary to support during
analysis. Figure 5 summarises the API coverage of the API
semantics engine. We support 1200 API calls, which covers
over 90% of the call-sites we found on a data set of over
95, 000 applications. The entire list of methods we support
is too long to recall here.

5 Pegasus

We design and implement Pegasus, an analysis system
that combines the abstraction procedure in Section 4 with

analysis of PEGs and rewriting of Android applications.

System Overview. Figure 6 presents an overview of the
Pegasus architecture. Pegasus takes as input an Android
application and a specification expressed as safety property
over events and actions. It uses a translation tool to convert
Dalvik bytecode to Java bytecode. Using Java bytecode al-
lows us to use off-the-shelf analysis frameworks.

The abstraction engine takes as input Java bytecode and
generates an PEG as output. The PEG is fed to the veri-
fication tool, along with a specification to check for con-
formance. If certain application behaviour cannot be anal-
ysed (for instance, due to unresolved reflection), the rewrit-
ing tool generates a new application that contains dynamic
checks when reflective calls are made.

If the PEG satisfies the specification, and the implemen-
tation of the API and event semantics engines, and the ver-
ification procedure is sound, the application is guaranteed
to satisfy the specification as well. If the PEG does not sat-
isfy the specification, it may be because the application vi-
olates the specification, or because the overapproximation
creates false positives. For each violation, Pegasus produces
a counterexample trace which can be used to determine if
the violation corresponds to a feasible execution.

Specifications. Recall that safety properties assert that cer-
tain undesirable behaviours never occur. Researchers have
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Figure 6. Pegasus architecture. The system consists of a translation and a verification tool, and an abstraction engine.

Figure 5. Coverage of API calls in the API seman-
tics engine. API calls are represented by numbers on
the x-axis. A vertical blue line represents the num-
ber of applications in which an API call occurs. The
red line represents the cumulative distribution of API
calls across call-sites. 1062 APIs make up for 90% of
the calls in 95910 applications, and are part of those
supported by our API semantics engine.

developed a numerous languages for safety properties. The
SLAM project used a C-like specification language called
SLIC [3], because it was convenient to use specification lan-
guage with similar syntax to the analysed programs. Simi-
larly, we write specification monitors in Java.

A specification for the running example is shown in Fig-
ure 7. The callback function checkEvent is used to deter-
mine if the current event modality corresponds to the but-
ton click handler for REC. If the current event modality
corresponds to the REC button click event, the specifica-
tion checker sets class field recButtonClicked to true.

1 public class RunningExample implements SpecificationChecker {
2 // is the application currently recording?
3 private boolean isRecording = false;
4 // is the application allowed to record? (i.e., did the user
5 // press the Record button and not yet press the Stop button?)
6 private boolean recordingAllowed = false;
7
8 public boolean checkEvent(EventModality event) {
9 if (event.getEventHandler() ==

10 getClickHandlerForButtonByLabel(‘‘REC’’))
11 recordingAllowed = true;
12 else if (event.getEventHandler() ==
13 getClickHandlerForButtonByLabel(‘‘STOP’’))
14 recordingAllowed = false;
15
16 for (Action action : event.getActions()) {
17 if (action == RECORD START)
18 isRecording = true;
19 else if (action == RECORD STOP)
20 isRecording = false;
21 }
22
23 boolean violation = (isRecording && !recordingAllowed);
24 return violation;
25 }
26 }

Figure 7. Specification for the running example.

It then scans all the behaviours associated with the current
event modality. If it finds the RecordStart behaviour and
the record button has not been previously clicked, it signals
a violation by returning true.

A user of our system implements specifications using
the SpecificationChecker interface, which defines the
callback function checkEvent. The verification algo-
rithm calls this function for each event modality reached
during exploration. Depending on the specification, the
checkEvent function inspects the event type, the actions
associated with the event, or both. The checkEvent returns



true if a violation has occurred based on the current event
modality, and false otherwise. The specification checker
can maintain a specification state in its class fields. The
specification state is stored and restored by the verification
tool using Java serialization.

To ease the task of writing specifications, we also im-
plement a mapping from low-level API calls to high-level
actions, such as maps from API calls to permissions [1, 18],
and other security relevant actions, such as the start and the
stop of recording. Pegasus enumerates the application’s se-
quences of actions. It uses a Java interface to pass these
sequences to the Java specification, which updates the state
of the specification until a violation state is reached. If no
sequence in a PEG leads to a violation, the application satis-
fies the specification.

Verification. Pegasus includes a verification algorithm that
uses a bounded, breadth-first graph search with pruning, to
check security properties written as Java checkers. Once the
PEG has been generated, specifications can also be checked
using other model checkers.

Rewriting. Our analysis is designed to successfully analyse
many common-case uses of potentially problematic Java
constructs such as reflection and dynamic invoke dispatch-
ing. The semantics of these constructs depends on infor-
mation that is available only when the program executes, so
static analyses may be unable to precisely analyse programs
that use them. We rewriting applications to include runtime
checks to account for cases where static analysis does not
succeed.

When the abstraction engine fails to analyse part of an
application, three strategies can be applied. The first one
is to introduce a havoc statement and assume anything can
happen. This strategy usually leads to a high false positive
rate, and consequently, a tool that is not usable in practice.

The second strategy is to add runtime checks to only
allow executions that respect the conditions computed by
static analysis. For example, we can add runtime checks
only allow a reflective call if the target call was already de-
rived by static analysis. Static analysis may also fail to de-
termine all the sensitive resources an application accesses.
We can similarly add runtime checks to only permit ac-
cesses to URIs that were either statically determined, or are
not considered sensitive, such as contact lists or SMSes.

We use the second strategy. In specific cases, where we
have manually scrutinised an application, we permit exe-
cutions even if they have not been analysed statically. This
occurs when we believe the behaviour that was not statically
analysed is benign. Such manually aided rewriting allows
us to reduce the overhead of runtime checks.

In Section 6 we evaluate the number of unresolved tran-
sitions in the applications we analysed. The number is gen-
erally small, a fact we attribute to the simple coding patterns
used by most applications (e.g., using a constant string as

the argument to a reflection call), as well as our per-event
context-sensitive analysis which allows us to propagate in-
formation through method calls within each event handler.

We do not support unknown native code. Known native
code is modelled by the API semantics engine. Known dy-
namic class loading is supported by analysing the class and
treating its loading point as a reflective call.

Implementation. Pegasus is implemented in 11,626 lines
of Java code, including the code for the abstraction, model
generation, and verification phases. The API semantics en-
gine models 1218 APIs and the event semantics engine sup-
ports 62 different types of events. We developed a transla-
tion framework to translate Dalvik bytecode to Java byte-
code; the dataflow analysis and rewriting are implemented
in Soot [31], a compiler and static analysis framework for
Java bytecode.

6 Evaluation

This section describes our experiments using Pegasus to
demonstrate that PEGs can be used to automatically check
and enforce policies in Android applications. All experi-
ments are performed on an Intel Core i7 CPU machine with
4GB physical memory.

6.1 Generic Specification Checking

We run Pegasus on 152 malicious and 117 benign An-
droid applications, and measure the execution and the size
of the PEG. Figure 8 presents the Cumulative Distribution
Function (CDF) of the time spent on PEG generation. On
over 80% of the applications, the abstraction phase termi-
nates within 600 seconds. The abstraction phase also al-
ways terminated within 2 hours. Figure 9 presents the CDF
of PEG verification time, on a logarithmic scale. The ver-
ification phase terminates within 1000 seconds, for over
80% of the inputs, and the verification phase always termi-
nates within 3.6 hours. To boost efficiency, we heuristically
bounded verification to terminate after 50000 states were
explored. The justification behind this heuristic is shown
in Figure 10, where most of the applications have at most
10000 unique states, so the probability of an unsound result
is low.

In the verification phase, we check 6 application-
independent properties to determine if sensitive operations
are guarded by user interaction. The three sensitive oper-
ations we consider are reading the GPS location, accessing
the SD card, and sending SMSes. The properties we check
are that the three behaviours above are always bracketed by
user interaction, such as a button click. The result of verifi-
cation is shown in Table 2. We see that malicious applica-
tions performing sensitive operations without user consent
more frequently than benign applications.



Figure 8. CDF of abstraction time.

Figure 9. CDF of the verification time.

6.2 Application-Specific Properties

Sample Applications. In this section, we check
application-specific properties on 17 sample applications,
including 8 benign applications and 9 applications with
known malicious behaviours, to demonstrate Pegasus used
as a diagnostic tool. Table 4 in Appendix A lists these sam-
ple applications and presents a short description for each
application. The first 8 applications are benign samples se-
lected from the official Android Market and third-party ap-
plication stores. We selected these applications to represent
a broad variety of different application classes that together
exercise most of the core functionality supported in the An-
droid system. These applications implement a variety of
behaviours such as recording audio, accessing the phone’s
contacts, sending SMS messages, and accessing the device
GPS location. The remaining 9 samples are malware which
exhibit a variety of malicious behaviours.

Specifications. For these applications, we constructed
application-specific properties after installing each applica-
tion, reading its documentation to understand its intended

Figure 10. CDF of PEG size measured by the number
of states.

Sensitive Malicious Benign
Operation NoUI Total NoUI Total

GPS 15 15 18 30
SD card 25 26 25 32
SMS 10 11 0 1

Table 2. Results of checking application-
independent specifications. The first column is
the name of the sensitive resource accessed. The
“NoUI” columns list the number of applications
accessing these resources without user consent.

functionality, looking at the list of events and GUI widgets
used by the application, then determining a security policy
which an analyst might reasonably wish to impose on the
application. We wrote 23 application-specific properties.

PEG Generation. Table 3 summarises the results of PEG
generation. The last two columns of Table 3, show how
often the analysis can resolve the targets of intent calls and
reflective calls. We also manually inspected the decompiled
source code to resolve values that were not automatically
determined, then used the rewriting tool to enforce those
values at runtime.

Verification. We used Pegasus to check the generated PEGs
for conformance to their properties. When Pegasus found a
violation, we manually executed the applications and used
the counterexample trace to determine if the violation rep-
resented a feasible behaviour of the application. If source
code was available, we also inspected the code.

Our results show that Pegasus completes verification of
most applications in less than a second, with a maximum
verification time of 10 seconds. The length of the coun-
terexample traces for violations ranges from 4 to 10 events.



Name
Size EM Intents Reflection
KB # UR T UR T

Who’s Calling? 148 83 0 2 0 0
Share Contacts 135 359 0 9 1 2
Geotag 117 226 0 19 1 2
Find My Phone 285 29 0 2 6 11
Simple Recorder 20 16 0 0 0 0
Diet SD Card 304 155 0 14 2 5
SMS Cleaner Free 159 175 0 14 0 3
SyncMyPix 425 300 4 12 1 3

SMS Replicator 63 18 0 0 0 0
ADSms 41 38 0 0 0 0
ZitMo 20 19 0 0 0 0
HippoSMS 404 434 0 38 0 0
DroidDream 204 89 12 15 0 0
Zsone 241 30 0 0 1 3
Geinimi 558 51 4 4 4 6
Spitmo 20 6 0 0 0 0
Malicious Recorder 20 25 0 0 0 0

Table 3. Summary of the evaluation results. The
columns are: (1) name of application, (2) size of the
.apk file, (3) number of event-modalities, (4) number
of (unresolved) intents, (5) number of (unresolved)
reflection calls.

The properties we checked are discussed in detail in Sec-
tion 6.3. We checked 8 benign applications, against a total
of 16 properties. For 11 of these properties, Pegasus de-
termined that the application satisfied the property. For 3 of
the remaining properties, we determined that Pegasus found
a property violation due to legitimate but unexpected appli-
cation behaviour. We believe that analysts would find such
information valuable.

For 1 of the remaining 2 properties, Pegasus determined
that an infeasible path involving dead code violated the
property. For the last property, imprecision in the analysis
caused Pegasus to determine that the application violated
the property. Consequently, we conclude that Pegasus has
false positives for 2 of the 16 properties.

For all 9 malicious applications, Pegasus correctly re-
ported violations of at least one of the 7 properties. In other
words, there were no false negatives for these properties.

6.3 Case Studies

We now present case studies illustrating properties one
can check with Pegasus. Table 5 in Appendix A provides
detailed information about the security actions and events
used in the specifications in this section.

Specification Format. For brevity, we present specifica-
tions as LTL formulae. Note that Pegasus does not actually
take LTL formulae as input but requires specifications to be
encoded as a Java checker. A specification for the Find My
Phone application is shown below.

¬Send-SMS U Receive-SMS

The symbol U is the until operator, while Send-SMS is an
action and Receive-SMS is an event. The specification is
read in English as asserting that

The application does not send an SMS until it re-
ceives an SMS.

A important technical clarification is in order: the tempo-
ral logics supported by standard model checkers are usually
state-based, meaning the propositions occurring in formu-
lae describe properties of states. In our specification, mode-
variables describe states and action labels describe proper-
ties of transitions. In technical temporal logic parlance, our
specifications are both state and event-based. Consult [9]
for an in-depth discussion of such issues.

6.3.1 Benign Applications

Simple Recorder. The simple recorder contains two but-
tons to start and stop recording, and behaves as expected.
We check that the application only records audio when the
REC is clicked, and stops when STOP is clicked. This prop-
erty is expressed in LTL as

(¬Start-Recording U REC.onClick)

∧ (Stop-Recording ⇐⇒ STOP.onClick)

The application satisfies this property.

Diet SD Card. We check that the application accesses the
SD card only after a button labelled Clean is clicked.

¬Access-SD U Clean.onClick

The application satisfies this property, showing that the SD
card is only accessed after Clean is clicked.

Geotag. We check that the application accesses geolocation
information only after the user clicks the Locate button.

¬Access-GPS U Locate.onClick

Pegasus discovers a property violation. On examining the
counterexample, we determined that the main activity’s
onCreate event handler initialises the Google Ads library,
which spawns a new background task and accesses the ge-
olocation information. If we refine our property to

¬Access-GPS U

(
Locate.onClick

∨ AdTask.onPreExecute

)



Pegasus no longer reports a violation. We have also learnt
that the only way the geolocation can be accessed without
the user’s consent is via the Google Ads library.

Who’s Calling?. Similar to the Geotag application, we
check the that contacts information is only accessed after
a phone call is received.

¬Access-Contacts U PhoneCall.onReceive

Pegasus returns a counterexample which shows that the ap-
plication retrieves and caches the contact list when it starts
up. We verified this behaviour manually by running the ap-
plication in an emulator and observing its API calls.

Share Contacts. We check whether the application ac-
cesses contacts if an SMS is not sent.

¬Send-SMS U Access-Contacts

This property holds. We then checked that SMSes are sent
in response to user input.

¬Send-SMS U Send.onClick

This property also holds. Finally, we check if adding a new
contact requires user consent.

¬Insert-Contacts U Insert.onClick

This property too is satisfied.

SMS Cleaner Free. This application allows users to delete
SMS messages that match a user-provided contact name. We
check if accessing contacts is user-driven.

¬Access-Contacts U Select-Contact.onClick

Pegasus reports a property violation. We manually investi-
gated the counterexample generated and concluded that the
counterexample was not feasible. The reported violation is
a false positive. This application uses a switch statement to
register the same event handler for different button clicks.
Our abstraction engine does not consider branch conditions,
so in the generated PEG every button click can trigger every
event handler.

Find My Phone. This application responds to the receipt
of an SMS containing a specific keyword by sending the
phone’s GPS location. We check if an SMS can be sent with-
out any being received.

¬Send-SMS U Receive-SMS

Pegasus reports a violation. We manually verified that the
violation was a false positive.

SyncMyPix.The SyncMyPix application specifies the tar-
get of an intent by looking at the configuration file and

using a default value if the user does not specify the tar-
get. The set of possible runtime targets is not arbitrary, be-
cause they must be components in the application, but static
analysis does not have this information and is inconclusive.
We rewrite the application to force the target of the intent
to be the default one. The rewriting takes 5 seconds and
the rewritten application works correctly. We check if the
rewritten application can access contacts without the Sync
being clicked.

¬Access-Contacts U Sync.onClick

Pegasus reports a property violation. The counterexample
revealed that the application may access the contacts if the
user clicks the Result button. We verified manually that
clicking Result displays the results of synchronising pic-
tures. This behaviour is innocuous, so we refined the prop-
erty as below.

¬Access-Contacts U

(
Result.onClick

∨ Sync.onClick

)
The application satisfies the refined property.

6.3.2 Malicious Applications

Malicious Recorder. This application contains the same
functionality as the benign recording application. However,
it also records audio for 15 seconds whenever a new SMS is
received. We check the same specifications as the Simple
Recorder application and verification fails. The counterex-
ample shows that that a timer can trigger recording.

ZitMo. In most benign applications, the SMS messages re-
ceived should either be passed on to the next Broadcast Re-
ceiver or displayed to the user. Thus we check

¬BroadcastAbort

to see whether the ZitMo application discards SMSes with-
out notifying the user. Pegasus reports a violation, which
we confirmed manually.

SMS Replicator Secret. We checked two properties of this
application.

¬Send-SMS U Button.onClick

¬BroadcastAbort

Both properties are violated, because the application mali-
cious sample sends SMS messages without user interaction,
and deletes certain incoming SMS messages.

ADSms. We use Pegasus to study this application and un-
derstand how it uses permissions. We check three proper-



ties.

¬Kill-Background-Processes

¬Read-IMEI

¬Send-SMS

The counterexamples show that this application registers
a broadcast receiver to kill anti-virus processes. We also
discovered that the broadcast receiver starts a new process,
which reads IMEI information and sends SMS messages to
premium-rate numbers.

7 Related Work and Discussion

We build upon work at the intersection of specification
languages, program analysis, model checking, and Android
security. These areas are all mature and a comprehensive
survey is beyond the scope of this paper. We only attempt
to place our work in the context of either seminal or very
recent papers in each area.

Specification Languages. A specification language may
be external to a program, as with a temporal logic or in-
ternal to a program as in design-by-contract mechanisms.
See [32] for a hardware-oriented survey of industrial for-
mats for temporal logics, and [6] for an overview of JML
and ESC/Java2, which is well known, but only one of many
specification mechanisms for Java.

Our use of rewriting achieves a form of in-line mon-
itoring, an idea articulated in [17]. Monitoring for se-
curity policies has been implemented in EFSA [29] and
PSLang [16], and with a focus on mobile security. in the
S3MS project [10], The Apex [27] system uses Android per-
missions to guide runtime monitoring, while our monitoring
policies are defined by custom security properties.

We use runtime monitoring to deal with cases in which
static analysis is ineffective, such as in the presence of dy-
namic class loading or running native code. This combi-
nation can also be viewed as an optimisation that reduces
the overhead of runtime checks, and leverages the strengths
of both. JAM, developed concurrent to our work, com-
bines model checking with abstraction-refinement to alle-
viate monitoring overheads [22]. Techniques from JAM can
be used to improve our rewriting tool.

Static Analysis. The design of our abstraction engine com-
bines ideas from abstract interpretation [7] and software
model checking. The closest related work is the SLAM
toolkit [2], for checking properties of device drivers. Sim-
ilar to SLAM, we check policies about the interaction of
an application and the operating system, and use cubes
over Boolean variables for symbolically encoding . Unlike
SLAM, we abstract the operating system context of an event.
Moreover, instead of a theorem prover, we use a domain

specific event- and API-semantics engines to determine how
mode variables are transformed.

The ideas in SLAM has been extended to lazy abstrac-
tion [24], which interleaves the abstraction and checking
process, and to YOGI [4], which combines testing and the-
orem proving to construct abstractions. Most developments
that follow SLAM, such as those surveyed in [26] focus on
improving either model checking or abstraction. Our work
is orthogonal because we compute a different type of ab-
straction. Much work successive to SLAM, can be lifted to
Android and used to improve the construction or verifica-
tion of PEGs.

Though program analysis is a mature field, event driven
programs have only recently received attention. Interpro-
cedural data-flow analysis with a finite-height, powerset
lattice is EXPSPACE-hard [25]. In a language like Java,
all analysis depends on the quality of points-to analysis.
Points-to-analysis in the presence of an event-queue faces
similar complications as with function pointers [11]. These
are obstacles that will have to overcome if we wish to im-
prove our analysis.

Android Security. TaintDroid [13] supports dynamic taint-
tracking for Android applications. It explores one execution
at a time, while our system checks all the possible behaviors
of an application. Security analysis based on control-flow
patterns and simple static analysis has been used in [14] to
detect a range of malicious behaviour. A semantically richer
static analysis has been applied to Android in [28], but the
focus is on common bugs rather than security properties.

The Stowaway system [18] combines static analysis with
a permission map to identify applications requesting more
permissions than they use. Permission-based approaches [1,
15, 27] use a map from API calls to Android permissions.
Pegasus uses use a map from API calls and arguments to a
custom-defined set of actions. This set of actions extends
the abstraction of APIs provided by permissions.

Discussion. Analysis of PEGs provides richer semantic in-
formation than is available in standard program representa-
tions. PEGs abstract the operating system context in which
event handlers execute, and model checking of PEGs pro-
vides more information than pattern matching on syntactic
program artefacts. We can detect permissions used in back-
ground tasks, or in event-handlers triggered by invisible but-
tons. We are not aware of other techniques that can detect
such behaviour.

Analysis of PEGs is not a panacea for malware detec-
tion. However, our analysis gives security analysts an ad-
vantage in their arms race against new malware, by aiding
in identifying a new class of malicious behaviour. While
attackers can work to evade our analysis mechanisms, e.g.,
using native code or dynamic class loading, such evasion
requires code to adopt a more convoluted structure or ex-
hibit more circuitous behavior, compared to benign applica-



tions — thereby making the code more conspicuous. Thus,
much as the ZOZZLE defense against heap spraying attacks
in Javascript [8], our analysis can support and facilitate the
identification of malware. Even simple pattern matching of
syntactic structure, or triggered runtime checks, may be suf-
ficient to reveal anomalies that indicate malicious intent.

8 Conclusion

We have presented a new approach to specifying and de-
tecting malicious behaviour in Android applications. Our
conceptual contribution is the Permission Event Graph
(PEG) a new, domain-specific program abstraction, which
captures the context in which events fire, and the context-
sensitive effect of event-handlers. We devised a new static
analysis procedure for constructing PEGs from Dalvik byte-
code, and our implementation models of the Android event-
handling mechanism and several APIs. Our system Pegasus
can detect and prevent security specifications that charac-
terises safe interaction between user-driven events and ap-
plication actions. Given the rapidly increasing popularity
and sophisticated functionality of mobile applications, we
believe that analysis systems such as Pegasus will improve
the capabilities of security analysts.

Our work leads to several questions. One question is
to incorporate existing techniques to improve the precision
and efficiency of analyses used to construct and analyse
PEGs. A particularly interesting question is to determine
if counterexample-driven refinement can be used to im-
prove both verification and rewriting. A second problem
is to identify applications PEGs in other contexts, such as
to measure the complexity and usability of user-interfaces,
and statically provided permission information. Answering
such questions is left as future work.
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A Application, Action and Event Details

Table 4 lists the sample applications used to evaluate
Pegasus. Table 5 lists the security actions and events used
in the specifications.



Name Description

Who’s Calling? An application that uses text-to-speech to announce the caller ID of an incoming call.

Share Contacts An application that allows users to send and receive contacts via SMS.

Geotag An application that embeds the users current GPS location into uploaded pictures.

Find My Phone Responds with the GPS location of the device upon receiving a message containing a specific keyword.

Simple Recorder An application that recording audio from the microphone.

Diet SD Card An application that recommends files to delete from the SD card.

SMS Cleaner Free An application that allows the user to delete SMS messages based on a variety of features.

SyncMyPix An application that syncs pictures from Facebook friends to the contact list in the phone.

SMS Replicator
Secret

Spyware that automatically forwards SMS messages to a number selected by the user installing the application.

ADSms A malicious application that stealthily sends premium SMS messages and kills certain background processes.

ZitMo
A malicious application that intercepts SMS messages in order to harvest two-factor authentication codes issued
by banks.

HippoSMS A malicious application that stealthily deletes all incoming SMS messages.

DroidDream
(Steamy Window)

A trojan packaged with a benign application that stealthily sends SMS messages, installs new applications and
receives commands from a C&C server.

Zsone (iMatch) A malicious application that sends SMS messages to premium numbers.

Geinimi (Monkey
Jump 2)

A trojan packaged with a benign application that stealthily sends SMS messages, installs new applications and
receives commands from a C&C server.

Spitmo A trojan that intercepts and filters incoming SMS messages.
Malicious
Recorder

Mimics a benign sound recorder but also records audio when an SMS message is received.

Table 4. Sample applications used in the evaluation: 8 benign applications (top) and 9 malicious applications (bottom).

Name Description

Access-Contacts Access the contacts list.
Insert-Contacts Insert to the contacts list.
Send-SMS Send SMS.
Access-GPS Access GPS location information.
Start-Recording Start recording audio.
Stop-Recording Stop recording audio.

BroadcastAbort Abort an ordered broadcast (used by many malicious applications to prevent SMS messages from
being displayed to the user).

Access-SD Access the SD card.
Kill-Background-Processes Kill background processes.
Read-IMEI Read IMEI information.
Access-Internet Access the Internet.

REC.onClick The REC button’s onClick handler.
STOP.onClick The STOP button’s onClick handler.
Clean.onClick The Clean button’s onClick handler in Diet SD Card.
Locate.onClick The Locate button’s onClick handler in Geotag.
Send.onClick The Send button’s onClick handler in Share Contacts.
Insert.onClick The Insert button’s onClick handler in Share Contacts.
Select-Contact.onClick The Select-Contact button’s onClick handler in SMS Cleaner Free.
Button.onClick The general onClick handler for any button.
AdTask.onPreExecute The onPreExecute handler from a ASyncTask created by Google Ads library in Geotag.
AdTask.doInBackground The doInBackground handler from a ASyncTask created by Google Ads library in Geotag.
PhoneCall.onReceive The onReceive event from a broadcast receiver in the Who’s Calling? application.

Table 5. Security actions and events used in specifications.


